Albrecht Group

at the University of Birmingham

Menu
  • Latest news
  • Group
    • Professor Tim Albrecht
    • Adrian Fortuin, Dr
    • Nashwa Awais
    • Wesley Flavell
    • Lauren Matthews
    • Oliver Irving
    • Chris Weaver
  • Research
    • Single-molecule sensing with nanopores and nanopipettes
    • Charge Transport in Single Molecules
    • Quantum Tunnelling for Sensing and Sequencing
    • Machine Learning in Single-Molecule Science
  • Publications
  • Teaching

Publications

Tim’s Google Scholar page can be found here. Other members of the group have their own publication lists on their individual pages.

  1. Unsupervised classification of single-molecule data with autoencoders and transfer learning
    Anton Vladyka and Tim Albrecht.
    Machine Learning: Science and Technology 1, 35013 (2020) [DOI]
    [Show/hide abstract]
    Datasets from single-molecule experiments often reflect a large variety of molecular behaviour. The exploration of such datasets can be challenging, especially if knowledge about the data is limited and a priori assumptions about expected data characteristics are to be avoided. Indeed, searching for pre-defined signal characteristics is sometimes useful, but it can also lead to information loss and the introduction of expectation bias. Here, we demonstrate how Transfer Learning-enhanced dimensionality reduction can be employed to identify and quantify hidden features in single-molecule charge transport data, in an unsupervised manner. Taking advantage of open-access neural networks trained on millions of seemingly unrelated image data, our results also show how Deep Learning methodologies can readily be employed, even if the amount of problem-specific, ‘own’ data is limited.
  2. Surface Design: Exploiting the Instability of Small Nanoparticles on Metallic Substrates
    Nashwa Awais, Paramaconi Rodriguez, and Tim Albrecht.
    ECS Transactions 97, 885–892 (2020) [DOI]
    [Show/hide abstract]
    Thiolated Au nanoparticles have been shown to undergo fast redistribution of the capping layer and subsequently of the metal core, when in contact with bare Au substrates. This is the result of an intricate interplay of entropic and enthalpic factors, which are likely affected by the choice of core metal and capping chemistry. This raises interesting questions, for example whether such a process could be used to modify and functionalize electrode substrates in a well-defined and controlled manner. Here, we report results for Pt and Au nanoparticles on Au and Pt substrates, based on the electrochemical response of the modified electrodes towards the oxidation of glycerol in alkaline media. Our study provides evidence that Pt nanoparticles on Au substrates remain relatively stable, while Au nanoparticles on Pt substrates readily decompose. This is in accordance with initial expectations based on the energetics of the thiol/metal bond.
  3. Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films
    Xintai Wang, Troy L. R. Bennett, Ali Ismael, Luke A. Wilkinson, Joseph Hamill, Andrew J. P. White, Iain M. Grace, Oleg V. Kolosov, Tim Albrecht, Benjamin J. Robinson, Nicholas J. Long, Lesley F. Cohen, and Colin J. Lambert.
    Journal of the American Chemical Society 142, 8555-8560 (2020) [DOI]
  4. Single-Molecule Analysis with Solid-State Nanopores
    Tim Albrecht.
    Annual Review of Analytical Chemistry 12, 371–387 (2019) [DOI]
    [Show/hide abstract]
    Solid-state nanopores and nanopipettes are an exciting class of single-molecule sensors that has grown enormously over the last two decades. They offer a platform for testing fundamental concepts of stochasticity and transport at the nanoscale, for studying single-molecule biophysics and, increasingly, also for new analytical applications and in biomedical sensing. This review covers some fundamental aspects underpinning sensor operation and transport and, at the same time, it aims to put these into context as an analytical technique. It highlights new and recent developments and discusses some of the challenges lying ahead.
  5. Assisted delivery of anti-tumour platinum drugs using DNA-coiling gold nanoparticles bearing lumophores and intercalators: towards a new generation of multimodal nanocarriers with enhanced action
    Ana B. Caballero, Lucia Cardo, Sunil Claire, James Samuel Craig, Nikolas J. Hodges, Anton Vladyka, Tim Albrecht, Luke A. Rochford, Zoe Pikramenou, and Michael John Hannon.
    Chemical Science 10, 9244–9256 (2019) [DOI]
    [Show/hide abstract]
    Nanocarriers with unusual DNA binding properties provide enhanced cytotoxic activity beyond that conferred by the platinum agents they release.
  6. Rapid Fragmentation during Seeded Lysozyme Aggregation Revealed at the Single Molecule Level
    Markéta Kubánková, Xiaoyan Lin, Tim Albrecht, Joshua B. Edel, and Marina K. Kuimova.
    Analytical Chemistry (2019) [DOI]
    [Show/hide abstract]
    Protein aggregation is associated with neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. The poorly understood pathogenic mechanism of amyloid diseases makes early stage diagnostics or therapeutic intervention a challenge. Seeded polymerization that reduces the duration of the lag phase and accelerates fibril growth is a widespread model to study amyloid formation. Seeding effects are hypothesized to be important in the “infectivity” of amyloids and are linked to the development of systemic amyloidosis in vivo. The exact mechanism of seeding is unclear yet critical to illuminating the propagation of amyloids. Here we report on the lateral and axial fragmentation of seed fibrils in the presence of lysozyme monomers at short time scales, followed by the generation of oligomers and growth of fibrils.
  7. Gold-Induced Desulfurization in a Bis(ferrocenyl) Alkane Dithiol
    Evangelina Pensa, Rafa{ł} Karpowicz, Artur Jab{l}oński, Damian Trzybiński, Krzysztof Woźniak, Davor Šakić, Valerije Vrček, Nicholas J. Long, Tim Albrecht, and Konrad Kowalski.
    Organometallics 38, 2227–2232 (2019) [DOI]
  8. Electric Single-Molecule Hybridization Detector for Short DNA Fragments
    Amelia Y. Y. Loh, Claire H. Burgess, Diana A. Tanase, Giorgio Ferrari, Martyn A. McLachlan, Anthony E. G. Cass, and Tim Albrecht.
    Analytical Chemistry 90, 14063–14071 (2018) [DOI]
    [Show/hide abstract]
    In combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipettes, we demonstrate an all-electric, label-free hybridisation sensor for short DNA sequences ({\textless} 100 nt). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system a 88-mer target from the RV1910c gene in Mycobacterium tuberculosis that is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive pulse sensing in nanopipettes is capable of identifying rather subtle structural differences, such as the hybridisation state of the probes, in a statistically robust manner. With significant potential towards multiplexing and high-throughput analysis, our study points towards a new, single-molecule DNA assay technology that is fast, easy to use and compatible with point of care environments. Nanopore devices are a new class of stochastic single-molecule sensors. As nanoscale analogues of the well-known Coulter counter, which is routinely used for cell counting in hospital environments, they have been developed towards fast and label-free DNA sequencing. 1 This feat has now largely been achieved with (modified) biological pores, such as -hemolysin. 2 However, resistive pulse sensing with solid-state nanopores and nanopipettes offers a range of other potential applications. These nanodevices are relatively easy to fabricate (especially nanopipettes 3,4) and there is usually considerable flexibility in their design, with regards to the pore dimensions (diameter, channel length,
  9. Cross-plane conductance through a graphene/molecular monolayer/Au sandwich
    Bing Li, Marjan Famili, Evangelina Pensa, Iain Grace, Nicholas J. Long, Colin Lambert, Tim Albrecht, and Lesley F. Cohen.
    Nanoscale 10, 19791–19798 (2018) [DOI]
    [Show/hide abstract]
    Experimental scalability of junction properties, in combination with theoretical transmission probability, demonstrates a significantly enhanced molecular connection.
  10. Disentangling chemical effects in ionic-liquid-based Cu leaching from chalcopyrite
    A. Al-Zubeidi, D. Godfrey, and T. Albrecht.
    Journal of Electroanalytical Chemistry 819, 130-135 (2018) [DOI]
  11. Controlling the Dynamic Instability of Capped Metal Nanoparticles on Metallic Surfaces
    E. Pensa and T. Albrecht.
    Journal of Physical Chemistry Letters 9, 57-62 (2018) [DOI]
  12. Cyclic Voltammetry Peaks Due to Deep Level Traps in Si Nanowire Array Electrodes
    A. Shougee, F. Konstantinou, T. Albrecht, and K. Fobelets.
    IEEE Transactions on Nanotechnology 17, 154-160 (2018) [DOI]
  13. Electrochemical processes at the nanoscale
    T. Albrecht, S. Horswell, L. K. Allerston, N. V. Rees, and P. Rodriguez.
    Current Opinion in Electrochemistry 7, 138-145 (2018) [DOI]
  14. A Redox-Activated G-Quadruplex DNA Binder Based on a Platinum(IV)–Salphen Complex
    S. Bandeira, J. Gonzalez-Garcia, E. Pensa, T. Albrecht, and R. Vilar.
    Angewandte Chemie – International Edition 57, 310-313 (2018) [DOI]
  15. Deep learning for single-molecule science
    Tim Albrecht, Gregory Slabaugh, Eduardo Alonso, and SM Masudur R. Al-Arif.
    Nanotechnology 28, 423001 (2017) [DOI]
  16. The role of ion-water interactions in determining the Soret coefficient of LiCl aqueous solutions
    S. Di Lecce, T. Albrecht, and F. Bresme.
    Physical Chemistry Chemical Physics 19, 9575-9583 (2017) [DOI]
  17. Single-Molecule Conductance Studies of Organometallic Complexes Bearing 3-Thienyl Contacting Groups
    S. Bock, O. A. Al-Owaedi, S. G. Eaves, D. C. Milan, M. Lemmer, B. W. Skelton, H. M. Osorio, R. J. Nichols, S. J. Higgins, P. Cea, N. J. Long, T. Albrecht, S. Mart�n, C. J. Lambert, and P. J. Low.
    Chemistry – A European Journal 23, 2133-2143 (2017) [DOI]
  18. Low Noise Nanopore Platforms Optimised for the Synchronised Optical and Electrical Detection of Biomolecules
    W. H. Pitchford, C. R. Crick, H. -J. Kim, A. P. Ivanov, H. -M. Kim, J. -S. Yu, T. Albrecht, K. -B. Kim, and J. B. Edel.
    RSC Nanoscience and Nanotechnology 2017-January, 270-300 (2017) [DOI]
  19. Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics
    L. E. Wilson, C. Hassenrück, R. F. Winter, A. J. P. White, T. Albrecht, and N. J. Long.
    Angewandte Chemie – International Edition 56, 6838-6842 (2017) [DOI]
  20. Functionalised Biferrocene Systems towards Molecular Electronics
    L. E. Wilson, C. Hassenrück, R. F. Winter, A. J. P. White, T. Albrecht, and N. J. Long.
    European Journal of Inorganic Chemistry 2017, 496-504 (2017) [DOI]
  21. Ionic liquids for metal extraction from chalcopyrite: Solid, liquid and gas phase studies
    O. Kuzmina, E. Symianakis, D. Godfrey, T. Albrecht, and T. Welton.
    Physical Chemistry Chemical Physics 19, 21556-21564 (2017) [DOI]
  22. A computational approach to calculate the heat of transport of aqueous solutions
    S. Di Lecce, T. Albrecht, and F. Bresme.
    Scientific Reports 7, (2017) [DOI]
  23. Progress in single-biomolecule analysis with solid-state nanopores
    T. Albrecht.
    Current Opinion in Electrochemistry 4, 159-165 (2017) [DOI]
  24. TiO2coated Si nanowire electrodes for electrochemical double layer capacitors in room temperature ionic liquid
    F. Konstantinou, A. Shougee, T. Albrecht, and K. Fobelets.
    Journal of Physics D: Applied Physics 50, (2017) [DOI]
  25. Single Molecule Trapping and Sensing Using Dual Nanopores Separated by a Zeptoliter Nanobridge
    P. Cadinu, B. Paulose Nadappuram, D. J. Lee, J. Y. Y. Sze, G. Campolo, Y. Zhang, A. Shevchuk, S. Ladame, T. Albrecht, Y. Korchev, A. P. Ivanov, and J. B. Edel.
    Nano Letters 17, 6376-6384 (2017) [DOI]
  26. High-Vacuum Deposition of Biferrocene Thin Films on Room-Temperature Substrates
    R. Leber, L. E. Wilson, P. Robaschik, M. S. Inkpen, D. J. Payne, N. J. Long, T. Albrecht, C. F. Hirjibehedin, and S. Heutz.
    Chemistry of Materials 29, 8663-8669 (2017) [DOI]
  27. Insulated molecular wires: Inhibiting orthogonal contacts in metal complex based molecular junctions
    O. A. Al-Owaedi, S. Bock, D. C. Milan, M. -C. Oerthel, M. S. Inkpen, D. S. Yufit, A. N. Sobolev, N. J. Long, T. Albrecht, S. J. Higgins, M. R. Bryce, R. J. Nichols, C. J. Lambert, and P. J. Low.
    Nanoscale 9, 9902-9912 (2017) [DOI]
  28. Principles of a Single-Molecule Rectifier in Electrolytic Environment
    K. C. M. Cheung, X. Chen, T. Albrecht, and A. A. Kornyshev.
    Journal of Physical Chemistry C 120, 3089-3106 (2016) [DOI]
  29. Nanopores: general discussion
    A. Mount, M. Kang, D. Fermin, T. Albrecht, J. Gooding, R. Crooks, N. Tao, W. Schmickler, J. MacPherson, S. Chen, P. Actis, O. Magnussen, L. Baker, P. Bartlett, S. Faez, J. Clausmeyer, B. Thomas, P. A. Ash, F. Kanoufi, Y. Long, P. Unwin, M. Koper, S. Lemay, A. Ewing, Z. Tian, R. Johnson, M. Eikerling, and M. Platt.
    Faraday Discussions 193, 507-531 (2016) [DOI]
  30. Electrochemistry of single nanoparticles: general discussion
    T. Albrecht, J. MacPherson, O. Magnussen, D. Fermin, R. Crooks, J. Gooding, T. Hersbach, F. Kanoufi, W. Schuhmann, C. Bentley, N. Tao, S. Mitra, K. Krischer, K. Tschulik, S. Faez, W. Nogala, P. Unwin, Y. Long, M. Koper, Z. Tian, M. A. Alpuche-Aviles, H. White, V. Brasiliense, C. Kranz, W. Schmickler, K. Stevenson, C. Jing, and M. Edwards.
    Faraday Discussions 193, 387-413 (2016) [DOI]
  31. High-bandwidth detection of short DNA in nanopipettes
    R. L. Fraccari, M. Carminati, G. Piantanida, T. Leontidou, G. Ferrari, and T. Albrecht.
    Faraday Discussions 193, 459-470 (2016) [DOI]
  32. A robotic platform for high-throughput electrochemical analysis of chalcopyrite leaching
    D. Godfrey, J. H. Bannock, O. Kuzmina, T. Welton, and T. Albrecht.
    Green Chemistry 18, 1930-1937 (2016) [DOI]
  33. High-speed detection of DNA translocation in nanopipettes
    R. L. Fraccari, P. Ciccarella, A. Bahrami, M. Carminati, G. Ferrari, and T. Albrecht.
    Nanoscale 8, 7604-7611 (2016) [DOI]
  34. Single-Molecule Studies of Unlabeled Full-Length p53 Protein Binding to DNA
    P. Nuttall, K. Lee, P. Ciccarella, M. Carminati, G. Ferrari, K. -B. Kim, and T. Albrecht.
    Journal of Physical Chemistry B 120, 2106-2114 (2016) [DOI]
  35. Trianguleniums as Optical Probes for G-Quadruplexes: APhotophysical, Electrochemical, and Computational Study
    A. Shivalingam, A. Vyšniauskas, T. Albrecht, A. J. P. White, M. K. Kuimova, and R. Vilar.
    Chemistry – A European Journal 22, 4129-4139 (2016) [DOI]
  36. Complexes comprising ‘dangling’ phosphorus arms and tri(hetero)metallic butenynyl moieties
    M. S. Inkpen, A. J. P. White, T. Albrecht, and N. J. Long.
    Journal of Organometallic Chemistry 812, 145-150 (2016) [DOI]
  37. Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid
    L. Qiao, A. Shougee, T. Albrecht, and K. Fobelets.
    Electrochimica Acta 210, 32-37 (2016) [DOI]
  38. Oligomeric ferrocene rings
    M. S. Inkpen, S. Scheerer, M. Linseis, A. J. P. White, R. F. Winter, T. Albrecht, and N. J. Long.
    Nature Chemistry 8, 825-830 (2016) [DOI]
  39. Unsupervised vector-based classification of single-molecule charge transport data
    Mario Lemmer, Michael S. Inkpen, Katja Kornysheva, Nicholas J. Long, and Tim Albrecht.
    Nature Communications 7, 1–10 (2016) [DOI]
  40. Synchronized optical and electronic detection of biomolecules using a low noise nanopore platform
    W. H. Pitchford, H. -J. Kim, A. P. Ivanov, H. -M. Kim, J. -S. Yu, R. J. Leatherbarrow, T. Albrecht, K. -B. Kim, and J. B. Edel.
    ACS Nano 9, 1740-1748 (2015) [DOI]
  41. Electrodeposition and bipolar effects in metallized nanopores and their use in the detection of insulin
    A. Rutkowska, K. Freedman, J. Skalkowska, M. J. Kim, J. B. Edel, and T. Albrecht.
    Analytical Chemistry 87, 2337-2344 (2015) [DOI]
  42. Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignments
    D. J. O. Lee, A. Wynveen, T. Albrecht, and A. A. Kornyshev.
    Journal of Chemical Physics 142, (2015) [DOI]
  43. Challenges of biomolecular detection at the nanoscale: Nanopores and microelectrodes
    K. Mathwig, T. Albrecht, E. D. Goluch, and L. Rassaei.
    Analytical Chemistry 87, 5470-5475 (2015) [DOI]
  44. Electronic structures of cyclometalated palladium complexes in the higher oxidation states
    B. N. Nguyen, L. A. Adrio, T. Albrecht, A. J. P. White, M. A. Newton, M. Nachtegaal, S. J. A. Figueroa, and K. K. Hii.
    Dalton Transactions 44, 16586-16591 (2015) [DOI]
  45. The Unusual Redox Properties of Fluoroferrocenes Revealed through a Comprehensive Study of the Haloferrocenes
    M. S. Inkpen, S. Du, M. Hildebrand, A. J. P. White, N. M. Harrison, T. Albrecht, and N. J. Long.
    Organometallics 34, 5461-5469 (2015) [DOI]
  46. New Insights into Single-Molecule Junctions Using a Robust, Unsupervised Approach to Data Collection and Analysis
    M. S. Inkpen, M. Lemmer, N. Fitzpatrick, D. C. Milan, R. J. Nichols, N. J. Long, and T. Albrecht.
    Journal of the American Chemical Society 137, 9971-9981 (2015) [DOI]
  47. Avoiding problem reactions at the ferrocenyl-alkyne motif: A convenient synthesis of model, redox-active complexes for molecular electronics
    M. S. Inkpen, A. J. P. White, T. Albrecht, and N. J. Long.
    Dalton Transactions 43, 15287-15290 (2014) [DOI]
  48. SSB binding to single-stranded DNA probed using solid-state nanopore sensors
    D. Japrung, A. Bahrami, A. Nadzeyka, L. Peto, S. Bauerdick, J. B. Edel, and T. Albrecht.
    Journal of Physical Chemistry B 118, 11605-11612 (2014) [DOI]
  49. Label-free Pb(II) whispering gallery mode sensing using self-assembled glutathione-modified gold nanoparticles on an optical microcavity
    S. Panich, K. A. Wilson, P. Nuttall, C. K. Wood, T. Albrecht, and J. B. Edel.
    Analytical Chemistry 86, 6299-6306 (2014) [DOI]
  50. Electrochemical applications of nanopore systems
    T. Albrecht, M. Carminati, G. Ferrari, P. Nuttall, W. Pitchford, and A. J. Rutkowska.
    SPR Electrochemistry 12, 155-186 (2014) [DOI]
  51. High precision fabrication and positioning of nanoelectrodes in a nanopore
    A. P. Ivanov, K. J. Freedman, M. J. Kim, T. Albrecht, and J. B. Edel.
    ACS Nano 8, 1940-1948 (2014) [DOI]
  52. Single molecule ionic current sensing in segmented flow microfluidics
    T. R. Gibb, A. P. Ivanov, J. B. Edel, and T. Albrecht.
    Analytical Chemistry 86, 1864-1871 (2014) [DOI]
  53. Oxidative purification of halogenated ferrocenes
    M. S. Inkpen, S. Du, M. Driver, T. Albrecht, and N. J. Long.
    Dalton Transactions 42, 2813-2816 (2013) [DOI]
  54. Mapping the ion current distribution in nanopore/electrode devices
    A. Rutkowska, J. B. Edel, and T. Albrecht.
    ACS Nano 7, 547-555 (2013) [DOI]
  55. Single-molecule studies of intrinsically disordered proteins using solid-state nanopores
    D. Japrung, J. Dogan, K. J. Freedman, A. Nadzeyka, S. Bauerdick, T. Albrecht, M. J. Kim, P. Jemth, and J. B. Edel.
    Analytical Chemistry 85, 2449-2456 (2013) [DOI]
  56. Branched redox-active complexes for the study of novel charge transport processes
    M. S. Inkpen, T. Albrecht, and N. J. Long.
    Organometallics 32, 6053-6060 (2013) [DOI]
  57. Rapid Sonogashira cross-coupling of iodoferrocenes and the unexpected cyclo-oligomerization of 4-ethynylphenylthioacetate
    M. S. Inkpen, A. J. P. White, T. Albrecht, and N. J. Long.
    Chemical Communications 49, 5663-5665 (2013) [DOI]
  58. Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores
    M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel.
    Nano Letters 13, 4602-4609 (2013) [DOI]
  59. Design and characterization of a current sensing platform for silicon-based nanopores with integrated tunneling nanoelectrodes
    M. Carminati, G. Ferrari, A. P. Ivanov, T. Albrecht, and M. Sampietro.
    Analog Integrated Circuits and Signal Processing 77, 333-343 (2013) [DOI]
  60. Electrochemical tunnelling sensors and their potential applications
    Tim Albrecht.
    Nature Communications 3, 810–829 (2012) [DOI]
    [Show/hide abstract]
    The quantum-mechanical tunnelling effect allows charge transport across nanometre-scale gaps between conducting electrodes. Application of a voltage between these electrodes leads to a measurable tunnelling current, which is highly sensitive to the gap size, the voltage applied and the medium in the gap. Applied to liquid environments, this offers interesting prospects of using tunnelling currents as a sensitive tool to study fundamental interfacial processes, to probe chemical reactions at the single-molecule level and to analyse the composition of biopolymers such as DNA, RNA or proteins. This offers the possibility of a new class of sensor devices with unique capabilities.
  61. Solid-state nanopores for biosensing with submolecular resolution
    A. Bahrami, F. Doǧan, D. Japrung, and T. Albrecht.
    Biochemical Society Transactions 40, 624-628 (2012) [DOI]
  62. Probing electron transport in proteins at room temperature with single-molecule precision
    M. S. Inkpen and T. Albrecht.
    ACS Nano 6, 13-16 (2012) [DOI]
  63. Nanobiotechnology: A new look for nanopore sensing
    T. Albrecht.
    Nature Nanotechnology 6, 195-196 (2011) [DOI]
  64. DNA tunneling detector embedded in a nanopore
    A. P. Ivanov, E. Instuli, C. M. McGilvery, G. Baldwin, D. W. McComb, T. Albrecht, and J. B. Edel.
    Nano Letters 11, 279-285 (2011) [DOI]
  65. Flow-based autocorrelation studies for the detection and investigation of single-particle surface-enhanced resonance raman spectroscopic events
    M. P. Cecchini, M. A. Stapountzi, D. W. McComb, T. Albrecht, and J. B. Edel.
    Analytical Chemistry 83, 1418-1424 (2011) [DOI]
  66. Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems
    M. P. Cecchini, J. Hong, C. Lim, J. Choo, T. Albrecht, A. J. DeMello, and J. B. Edel.
    Analytical Chemistry 83, 3076-3081 (2011) [DOI]
  67. How to understand and interpret current flow in nanopore/electrode devices
    T. Albrecht.
    ACS Nano 5, 6714-6725 (2011) [DOI]
  68. Resizing metal-coated nanopores using a scanning electron microscope
    G. A. T. Chansin, J. Hong, J. Dusting, A. J. Demello, T. Albrecht, and J. B. Edel.
    Small 7, 2736-2741 (2011) [DOI]
  69. Nanopore/electrode structures for single-molecule biosensing
    M. Ayub, A. Ivanov, E. Instuli, M. Cecchini, G. Chansin, C. McGilvery, J. Hong, G. Baldwin, D. McComb, J. B. Edel, and T. Albrecht.
    Electrochimica Acta 55, 8237-8243 (2010) [DOI]
  70. New developments in nanopore research – From fundamentals to applications
    T. Albrecht, J. B. Edel, and M. Winterhalter.
    Journal of Physics Condensed Matter 22, (2010) [DOI]
  71. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing
    M. Ayub, A. Ivanov, J. Hong, P. Kuhn, E. Instuli, J. B. Edel, and T. Albrecht.
    Journal of Physics Condensed Matter 22, (2010) [DOI]
  72. Layering and shear properties of an ionic liquid, 1-ethyl-3- methylimidazolium ethylsulfate, confined to nano-films between mica surfaces
    S. Perkin, T. Albrecht, and J. Klein.
    Physical Chemistry Chemical Physics 12, 1243-1247 (2010) [DOI]
  73. Interfacial redox processes of cytochrome b562
    P. Zuo, T. Albrecht, P. D. Barker, D. H. Murgida, and P. Hildebrandt.
    Physical Chemistry Chemical Physics 11, 7430-7436 (2009) [DOI]
  74. Charge transport in nanoscale junctions
    T. Albrecht, A. Kornyshev, and T. Bjørnholm.
    Journal of Physics Condensed Matter 20, (2008) [DOI]
  75. Single-molecule electron transfer in electrochemical environments
    J. Zhang, A. M. Kuznetsov, I. G. Medvedev, Q. Chi, T. Albrecht, P. S. Jensen, and J. Ulstrup.
    Chemical Reviews 108, 2737-2791 (2008) [DOI]
  76. A density functional theory study of the electronic properties of Os(II) and Os(III) complexes immobilized on Au(111)
    N. M. O’Boyle, T. Albrecht, D. H. Murgida, L. Cassidy, J. Ulstrup, and J. G. Vos.
    Inorganic Chemistry 46, 117-124 (2007) [DOI]
  77. Single-molecule conductance of redox molecules in electrochemical scanning tunneling microscopy
    W. Haiss, T. Albrecht, H. Van Zalinge, S. J. Higgins, D. Bethell, H. Höbenreich, D. J. Schiffrin, R. J. Nichols, A. M. Kuznetsov, J. Zhang, Q. Chi, and J. Ulstrup.
    Journal of Physical Chemistry B 111, 6703-6712 (2007) [DOI]
  78. Intrinsic multistate switching of gold clusters through electrochemical gating
    T. Albrecht, S. F. L. Mertens, and J. Ulstrup.
    Journal of the American Chemical Society 129, 9162-9167 (2007) [DOI]
  79. Mechanism of electrochemical charge transport in individual transition metal complexes
    T. Albrecht, A. Guckian, A. M. Kuznetsov, J. G. Vos, and J. Ulstrup.
    Journal of the American Chemical Society 128, 17132-17138 (2006) [DOI]
  80. Voltammetry and in situ scanning tunnelling microscopy of de novo designed heme protein monolayers on Au(111)-electrode surfaces
    T. Albrecht, W. -W. Li, W. Haehnel, P. Hildebrandt, and J. Ulstrup.
    Bioelectrochemistry 69, 193-200 (2006) [DOI]
  81. In situ scanning tunnelling spectroscopy of inorganic transition metal complexes
    T. Albrecht, K. Moth-Poulsen, J. B. Christensen, A. Guckian, T. Bjørnholm, J. G. Vos, and J. Ulstrup.
    Faraday Discussions 131, 265-279 (2006) [DOI]
  82. Scanning tunneling spectroscopy in an ionic liquid
    T. Albrecht, K. Moth-Poulsen, J. B. Christensen, J. Hjelm, T. Bjørnholm, and J. Ulstrup.
    Journal of the American Chemical Society 128, 6574-6575 (2006) [DOI]
  83. Potential-induced structural transitions of DL-homocysteine monolayers on Au(1 1 1) electrode surfaces
    J. Zhang, A. Demetriou, A. C. Welinder, T. Albrecht, R. J. Nichols, and J. Ulstrup.
    Chemical Physics 319, 210-221 (2005) [DOI]
  84. Transistor effects and in Situ STM of redox molecules at room temperature
    T. Albrecht, A. Guckian, J. Ulstrup, and J. G. Vos.
    IEEE Transactions on Nanotechnology 4, 430-433 (2005) [DOI]
  85. Transistor-like behavior of transition metal complexes
    T. Albrecht, A. Guckian, J. Ulstrup, and J. G. Vos.
    Nano Letters 5, 1451-1455 (2005) [DOI]
  86. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems
    J. Zhang, Q. Chi, T. Albrecht, A. M. Kuznetsov, M. Grubb, A. G. Hansen, H. Wackerbarth, A. C. Welinder, and J. Ulstrup.
    Electrochimica Acta 50, 3143-3159 (2005) [DOI]
  87. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes
    T. Albrecht, W. Li, J. Ulstrup, W. Haehnel, and P. Hildebrandt.
    ChemPhysChem 6, 961-970 (2005) [DOI]
  88. Prototype for in Situ Detection of Atmospheric NO3and N2O5via Laser-Induced Fluorescence
    E. C. Wood, P. J. Wooldridge, J. H. Freese, T. Albrecht, and R. C. Cohen.
    Environmental Science and Technology 37, 5732-5738 (2003) [DOI]

Recent news

  • Welcome back Lauren

    Welcome back Lauren

    29.09.2020
  • Congratulations Nashwa!

    Congratulations Nashwa!

    06.08.2020
  • Two New Papers Accepted

    Two New Papers Accepted

    20.07.2020
  • Group Activities during COVID-19

    Group Activities during COVID-19

    27.05.2020
  • Welcome Lauren and Chris!

    Welcome Lauren and Chris!

    03.10.2019

Albrecht Group 2022 . Powered by WordPress